The GMX-Plugin for the CELLmicrocosmos MembraneEditor
نویسندگان
چکیده
Membrane research in silico can roughly be subdivided into three parts: the modeling, simulation and analysis process. The GMX-plugin tries to bridge the gap between these three parts represented by the tools CELLmicrocosmos MembraneEditor (CmME) and Gromacs (GMX). CmME was developed to enable students and researchers a generation of PDB-based membranes in a fast and intuitive way without high computational requirements. From the beginning it was developed as an independent Javabased web start tool with a user-interface providing direct access to all functions implemented. The high performance of most Membrane Packing Algorithms is achieved especially by the handling of molecules as inflexible structures. The generated membranes can be exported to a PDB-file to be used with external applications [1]. One of these programs is GMX (here version 4.5.X), the well-known Molecular Dynamics package, supported and used over one decade by a very large community. It is applicable to the simulation of peptides, proteins, lipids as well as complete membranes [2]. The GMX-plugin version 1.1 is intended as an interface between CmME and GMX. It is combined with CmME on the local system and is able to access GMX on a local machine or on an external high-performance system via ssh or Unicore [3]. It is packaged with a set of lipids compatible to the Gromos 45a3 forcefield. In addition, predefined protocols exist for immediately starting a simulation of CmME-generated membranes. Custom protocols may be created, saved and reloaded by the user. The beta version of the plugin can be downloaded at: http://Cm2.CELLmicrocosmos.org.
منابع مشابه
Grid Workflow Approach using the CELLmicrocosmos 2.2 MembraneEditor and UNICORE to commit and monitor GROMACS Jobs
Motivation: Molecular dynamic simulations of membrane systems are an important method for the prediction and analysis of physicochemical properties. The CELLmicrocosmos 2.2 MembraneEditor (CmME) provides a comfortable workflow to generate lipid membranes with different conformations. While CmME is intended to generate molecular structures on desktop and mobile computers in a very short time, th...
متن کاملCoarse-grained and all-atom MD simulations with Gromacs based on CELLmicrocosmos 2.2 model membranes
The CELLmicrocosmos MembraneEditor (CmME) [1] enables researchers to generate PDB [2] based membrane structures in a convenient way. The lipid distribution is computed by algorithms working on the outer shapes of the molecules. For this reason, the computation and visualization process is very fast, while the atomistic structure of each single molecule remains unchanged. PDB membranes can be ex...
متن کاملMarine sponges (Porifera: Demospongiae) from the Gulf of México, new records and redescription of Erylus trisphaerus (de Laubenfels, 1953).
Marine sponges usually constitute the most diverse group of the benthic community in coral reefs. Although they are reasonably well studied at the northern Gulf of Mexico (GMx), the southern GMx is poorly known and lacks records from many major reef systems that lie off the Mexican coast. The present taxonomic study is the first sponge account from Alacranes reef, the largest coral reef system ...
متن کاملLand use changes analysis and prediction using remote sensing and QGIS MOLUSCE Plugin in the Siahkal County
Quantifying land use change dynamics is critical in tackling environmental and socio-economic challenges such as climate change in recent years. This study takes Siahkal County in Guilan Province as the research subject and analyzes the land use changes in two different years: 2000 and 2021, and predicts the change in 2031. We carried out land use change analysis using LANDSAT-7 ETM+ and LANDSA...
متن کاملCELLmicrocosmos 2.2: advancements and applications in modeling of three-dimensional PDB membranes
Results The geometry-based, scalable and modular computation concept supports fast to more complex membrane generations. CmME is based on the integration of two different types of PDB [1] models: Lipids are integrated with editable percental distribution values and algorithms. Proteins are inserted and aligned into the bilayer manually or automatically, by using data from the PDB_TM [2] or OPM ...
متن کامل